A novel framework for fluid/structure interaction in rapid subject specific simulations of blood flow in coronary artery bifurcations

Author:

Blagojevic Milan1,Nikolic Aleksandar1ORCID,Zivkovic Miroslav1,Zivkovic Milorad2,Stankovic Goran2ORCID

Affiliation:

1. Faculty of Engineering, Kragujevac

2. Faculty of Medicine, Belgrade

Abstract

Background/Aim. Practical difficulties, particularly long model development time, have limited the types and applicability of computational fluid dynamics simulations in numerical modeling of blood flow in serial manner. In these simulations, the most revealing flow parameters are the endothelial shear stress distribution and oscillatory shear index. The aim of this study was analyze their role in the diagnosis of the occurrence and prognosis of plaque development in coronary artery bifurcations. Methods. We developed a novel modeling technique for rapid cardiovascular hemodynamic simulations taking into account interactions between fluid domain (blood) and solid domain (artery wall). Two numerical models that represent the observed subdomains of an arbitrary patient-specific coronary artery bifurcation were created using multi-slice computed tomography (MSCT) coronagraphy and ultrasound measurements of blood velocity. Coronary flow using an in-house finite element solver PAK-FS was solved. Results. Overall behavior of coronary artery bifurcation during one cardiac cycle is described by: velocity, pressure, endothelial shear stress, oscillatory shear index, stress in arterial wall and nodal displacements. The places where (a) endothelial shear stress is less than 1.5, and (b) oscillatory shear index is very small (close or equal to 0) are prone to plaque genesis. Conclusion. Finite element simulation of fluid-structure interaction was used to investigate patient-specific flow dynamics and wall mechanics at coronary artery bifurcations. Simulation model revealed that lateral walls of the main branch and lateral walls distal to the carina are exposed to low endothelial shear stress which is a predilection site for development of atherosclerosis. This conclusion is confirmed by the low values ??of oscillatory shear index in those places.

Publisher

National Library of Serbia

Subject

Pharmacology (medical),General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3