Classification of second orders symmetric tensors on manifolds through an associated fourth order tensor

Author:

Hall Graham1

Affiliation:

1. Institute of Mathematics, University of Aberdeen, Aberdeen, Scotland, UK

Abstract

For a manifold M admitting a metric 1 and given a second order symmetric tensor T on M one can construct from 1 and (the trace-free part of) T a fourth order tensor E on M which is related in a one-to-one way with T and from which T may be readily obtained algebraically. In the case when dimM = 4 this leads to an interesting relationship between the Jordan-Segre algebraic classification of T, viewed as a linear map on the tangent space to M with respect to 1, and the Jordan-Segre classification of E, viewed as a linear map on the 6?dimensional vector space of 2?forms to itself (with respect to the usual metric on 2?forms). This paper explores this relationship for each of the three possible signatures for 1.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3