Integer arithmetic approximation of the hog algorithm used for pedestrian detection

Author:

Sladojevic Srdjan1,Anderla Andras1ORCID,Culibrk Dubravko1,Stefanovic Darko1,Lalic Bojan1

Affiliation:

1. Faculty of Technical Sciences, Novi Sad

Abstract

This paper presents the results of a study of the effects of integer (fixed-point) arithmetic implementation on classification accuracy of a popular open-source people detection system based on Histogram of Oriented Gradients. It is investigated how the system performance deviates from the reference algorithm performance as integer arithmetic is introduced with different bit-width in several critical parts of the system. In performed experiments, the effects of different bit-width integer arithmetic implementation for four key operations were separately considered: HoG descriptor magnitude calculation, HoG descriptor angle calculation, normalization and SVM classification. It is found that a 13-bit representation of variables is more than sufficient to accurately implement this system in integer arithmetic. The experiments in the paper are conducted for pedestrian detection and the methodology and the lessons learned from this study allow generalization of conclusions to a broader class of applications.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Detection Method for Wood Surface Defect Based on Feature Fusion;2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2022-12-02

2. A crosswalk pedestrian recognition system by using deep learning and zebra‐crossing recognition techniques;Software: Practice and Experience;2020-05

3. The Role of Service Business Models in the Manufacturing of Transition Economies;IFIP Advances in Information and Communication Technology;2020

4. A Comprehensive Survey of Video Datasets for Background Subtraction;IEEE Access;2019

5. A Human Recognition System for Pedestrian Crosswalk;HCI International 2018 – Posters' Extended Abstracts;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3