Preliminary study on the performance of biomorphic silicon carbide as substrate for diesel particulate filters

Author:

Orihuela Maria1,Gomez-Martin Aurora2,Becerra-Villanueva Jose1,Serrano-Reyes Javier1,Jimenez-Espadafor Francisco1,Chacartegui Ricardo1

Affiliation:

1. Department of Energetic Engineering, University of Seville, Seville, Spain

2. Department of Condensed Matter Physics, University of Seville, Seville, Spain

Abstract

This paper presents the results of a preliminary experimental study to assess the performance of biomorphic silicon carbide when used for the abatement of soot particles in the exhaust of Diesel engines. Given its optimal thermal and mechanical properties, silicon carbide is one of the most popular substrates in commercial diesel particulate filters. Biomorphic silicon carbide is known for having, be-sides, a hierarchical porous microstructure and the possibility of tailoring that microstructure through the selection of a suitable wood precursor. An experimental rig was designed and built to be integrated within an engine test bench that allowed to characterizing small lab-scale biomorphic silicon carbide filter samples. A particle counter was used to measure the particles distribution before and after the samples, while a differential pressure sensor was used to measure their pressure drop during the soot loading process. The experimental campaign yielded promising results: for the flow rate conditions that the measuring devices imposed (1 litre per minute; space velocity = 42,000 L/h), the samples showed initial efficiencies above 80%, pressure drops below 20 mbar, and a low increase in the pressure drop with the soot load which allows to reach almost 100% efficiency with an increase in pressure drop lower than 15%, when the soot load is still less than 0.01 g/L. It shows the potential of this material and the interest for advancing in more complex diesel particle filter designs based on the results of this work.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3