Effect of spherical blockage configurations on film cooling

Author:

Wang Jin1,Tian Ke1,Zhang Kai2,Baleta Jakov3,Sunden Bengt4

Affiliation:

1. Hebei University of Technology, School of Energy and Environmental Engineering, Tianjin, China

2. Hebei University of Technology, School of Energy and Environmental Engineering, Tianjin, China + North China Electric Power University, School of Energy Power and Mechanical Engineering, Beijing, China

3. University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Department of Energy, Power Engineering and Environment, Zagreb, Croatia

4. Lund University, Division of Heat Transfer, Department of Energy Sciences, Lund, Sweden

Abstract

With increasing inlet temperature of gas turbines, turbine blades need to be effectively protected by using cooling technologies. However, the deposition from the fuel impurities and dust particles in the air is often found inside film holes, which results in partial hole blockage. In this paper, the deposition geometry is simplified as a rectangular channel, and the effect of three blockage ratios is investigated by using the computational fluid dynamics. In addition, water droplets are also released from the coolant inlet to provide a comparison of the results with and without mist injection. It is found that the lateral film cooling effectiveness is reduced with increasing blockage ratio. For all the cases with the blowing ratio 0.6, 1% mist injection provides an improvement of the cooling performance by approximately 10%.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3