Thermodynamic analysis and optimization design of cooling plate with multiple channels for linear synchronous motor

Author:

Du Fan1,Yang Bo2,Zhang Tangjia3

Affiliation:

1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China + Hope College, Southwest Jiaotong University, Chengdu, China

2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China + Hope College, Southwest Jiaotong University, Chengdu, China

3. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

A liquid cooling plate structure with multiple channels is proposed for linear synchronous motor in this paper. Firstly, a conjugate heat dissipation model is established, and coupling analysis with fluid and temperature fields is performed by finite volume method with different channel numbers and section shapes. The simulation results show that, the cooling capacity of proposed cooling plate is observably improved, especially for 6 channels cooling plate with elliptical section. Afterwards, adopting boundary optimization by quadratic approximation algorithm, the section dimensions of 6 channels plate with elliptical section are further optimized to realize a trade-off with heat transfer coefficient and pump power. The optimized scheme can improve heat transfer coefficient by 33.03% and reduce the pressure drop by 85.37% compared with original scheme.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3