Experimental investigation on the effect of plunging pipe diameter change in cyclones to the performance of cyclones

Author:

Balikci Aysegul1,Koca Tarkan2

Affiliation:

1. Mimsan Machinery Group, Malatya, Turkiye

2. Inonu University Mechanical Engineering Department, Malatya, Turkiye

Abstract

In this study, in the cyclone designed according to the high-efficiency Stairmand model, three different immersion pipe diameters, four different flow rates, and two different samples were used to examine the pressure loss and dust holding efficiency that affect the cyclone performance. Cyclone separators are fixed-part devices used in the process of separating particles from the gas by forming vortexes with a gas stream containing solid particles. In cyclone separators, the parameters that have the most significant impact on their performance are dust collection efficiency and pressure loss. In this study, temperature measurement with thermocouple and pressure measurement with digital pressure measurement device were made at the inlet and outlet parts of the cyclone. Dust retention efficiency was calculated by the ratio of the weight of the dust entering the cyclone to the weight of the dust accumulated in the dust collection chamber at the end of the experiment. In addition, the obtained data were analyzed by means of SOLIDWORKS FLOW simulation program and compared with the experimental study. The best result in dust retention efficiency in the coal sample was obtained with 374.85 m? per hours flow rate and ?114.3 mm plunge pipe diameter. In the biomass sample, the best dust holding efficiency was obtained with an ?88.9 mm plunge pipe diameter at a flow rate of 374.85 m? per hours.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3