Personalization exercise recommendation framework based on knowledge concept graph

Author:

Yan Zhang1,Du Hongle2,Lin Zhang3,Jianhua Zhao1

Affiliation:

1. School of Mathematics and Computer Application, Shangluo University, Shangluo, China + Shangluo Public Big Data Research Center, Shangluo, China + Engineering Research Center of Qinling Health Welfare Big Data, Universities of Shaanxi Province, Shangluo, China

2. School of Mathematics and Computer Application, Shangluo University, Shangluo, China + Shangluo Public Big Data Research Center, Shangluo, China + College of Information Technology and Computer Science, University of the Cordilleras, Baguio City, Philippines

3. School of Mathematics and Computer Application, Shangluo University, Shangluo, China + Shangluo Public Big Data Research Center, Shangluo, China

Abstract

With the explosive increase of online learning resources, how to provide students with personalized learning resources and achieve the goal of precise teaching has become a research hotspot in the field of computer-assisted teaching. In personalized learning resource recommendation, exercise recommendation is the most commonly used and most representative research direction, which has attracted the attention of a large number of scholars. Aiming at this, a personalized exercise recommendation framework is proposed in this paper. First, it automatically constructs the relationship matrix between questions and concepts based on students' answering records (abbreviated as Q-matrix). Then based on the Q-matrix and answer records, deep knowledge tracing is used to automatically build the course knowledge graph. Then, based on each student's answer records, Q-matrix and the course knowledge graph, a recommendation algorithm is designed to obtain the knowledge structure diagram of every student. Combined the knowledge structure diagram and constructivist learning theory, get candidate recommended exercises from the exercise bank. Finally, based on their diversity, difficulty, novelty and other characteristics, exercises are filtered and obtain the exercises recommended to students. In the experimental part, the proposed framework is compared with other algorithms on the real data set. The experimental results of the proposed algorithm are close to the current mainstream algorithms without the Q-matrix and curriculum knowledge graph, and the experimental results of some indicators are better than Algorithms exist.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3