Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone)-b-poly(dimethylsiloxane)-b-poly(ε- caprolactone) triblock copolymer

Author:

Pergal Marija1ORCID,Antic Vesna2,Ostojic Sanja3,Marinovic-Cincovic Milena4,Djonlagic Jasna5

Affiliation:

1. Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, Belgrade

2. Faculty of Agriculture, Belgrade

3. Institute of General and Physical Chemistry, Belgrade

4. Vinča Institute of Nuclear Sciences, Belgrade

5. Faculty of Technology and Metallurgy, Belgrade

Abstract

A series of novel thermoplastic urethane-siloxane copolymers (TPUSs) based on a ?,?-dihydroxy-[poly(?-caprolactone)-bpoly( dimethylsiloxane)-b-poly(?-caprolactone)] (?,?-dihydroxy-PCLPDMS- PCL) triblock copolymer, 4,4?-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) was synthesized. The effects of the content (9-63 wt. %) of hard urethane segments and their degree of polymerization on the properties of the segmented TPUSs were investigated. The structure, composition and hard segment degree of polymerization of the hard segments were examined using 1H- and quantitative 13C-NMR spectroscopy. The degree of crystallinity of the synthesized copolymers was determined using wide-angle X-ray scattering (WAXS). The surface properties were evaluated by measuring the water contact angle and water absorption. In the series of the TPUSs, the average degree of polymerization of the hard segments was varied from 1.2 to 14.4 MDI-BD units. It was found that average values from 3.8 to 14.4 MDI-BD units were effective segment lengths for crystallization of hard segments, which resulted in an increase in the degree of microphase separation of the copolymers. Spherulite-like superstructures were observed in copolymer films by scanning electron microscopy (SEM), which are believed to arise from the crystallization of the hard segments and/or PCL segments, depending on the content of the hard segments. The surface of the copolymers became more hydrophobic with increasing weight fraction of PDMS. The synthesized copolymers based on a PCL-PDMS-PCL segment showed good thermal stability, which increased with increasing content of soft PDMS segments, as was confirmed by the value of the starting temperature of thermal degradation.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3