Heat transfer coefficient in elliptical tube at the constant heat flux

Author:

Lopata Stanislaw1,Oclon Pawel1,Stelmach Tomasz2,Markowski Pawel3

Affiliation:

1. Institute of Thermal Power Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, Cracow, Poland

2. PGE Energia Ciepla, Cracow, Poland

3. Jacobs Engineering Group Inc., Cracow, Poland

Abstract

Cross-flow heat exchangers with elliptical tubes are often used in industrial application. In comparison with round tubes, the elliptical tubes have a better aero-dynamic shape, which results in a lower pressure drop of working fluid flowing through the inter-tubular space of heat exchanger. Also, a higher heat flux is transferred from gas to the wall of such a tube due to the more intense heat exchange process. To prove this thesis, the values of the heat transfer coefficient from the wall of the elliptical pipe to the water flowing inside were determined, using the data from the conducted measurements. This study presents also research stand with a vertically positioned tube. In order to obtain a constant heat flux through the wall of elliptical tube, a resistance wire is used, evenly wound on the external surface of tube measuring section. The use of thermal insulation minimized heat loss to the environment to a negligible value. Installed K-type thermocouples allowed one to obtain, for various measurement conditions, the temperature distribution within the elliptical tube wall (for a given cross-section) and the water flowing inside it (in a given cross-section, at different depths, for both axes of the ellipse). The design of the stand allows such measurements in several locations along the length of the measurement section. The measurement results were used to verify numerical calculations. The relative error of the heat transfer coefficient value determined on the basis of CFD calculations using the SST-TR turbulence model in relation to the one determined on the basis of the measurement data is about 11%.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3