Chlorine corrosion of blast furnace gas pipelines: Analysis from thermal perspective

Author:

Sun W.-Q.1,Xu X.-D.2,Zhang Y.3,Wu J.-Z.2

Affiliation:

1. Department of Thermal Engineering, School of Metallurgy, Northeastern University, Shenyang, Liaoning, China + School of Engineering, Cardiff University, Cardiff CF AA, Wales, United Kingdom + State Environmental Protection Key Laboratory of Eco-Industry,

2. School of Engineering, Cardiff University, Cardiff CF AA, Wales, United Kingdom

3. R&D Centre, Hisense Group Co., Ltd., Qingdao, Shandong, China

Abstract

With the broad application of dry dedusting of blast furnace gas (BFG), the issue of BFG pipeline corrosion comes up because of chlorine in the BFG. Existing methods in preventing the corrosion, such as spraying alkali or installing corrosion-resistant materials, require a significant amount of investment. This paper conducted a novel thermal analysis of the corrosion mechanism to support the study on corrosion prevention without using additional materials. Firstly, thermal models were established to reflect the relationships among the amount of condensation water, the mass transfer rate, the concentration of chloride ion and the ambient temperature. Secondly, the relationship between BFG temperature and the corrosion rate was obtained via a cyclic exposure experiment. Key factors that affect the pipeline corrosion under various BFG temperatures were identified. Finally, a control scheme of the BFG temperature was proposed to avoid the chlorine corrosion.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3