Assessment of natural radioactivity levels and radon exhalation rate potential from various building materials

Author:

Vukanac Ivana1ORCID,Jankovic Marija1ORCID,Rajacic Milica1,Todorovic Dragana1ORCID,Ujic Predrag2ORCID,Pantelic Gordana1ORCID,Sarap Natasa1ORCID,Krneta-Nikolic Jelena1

Affiliation:

1. Radiation and Environmental Protection Department, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

2. Laboratory for Nuclear and Plasma Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

Abstract

Various imported building materials commonly used in construction and industry in Serbia were analyzed using gamma spectrometry. Based on the activity concentrations of 226Ra, 232Th, and 40K in the investigated samples, radium equivalent activity, Raeq, absorbed dose rate, D, annual effective dose, DE, and the external hazard index, Hex, were calculated to assess the radiation hazard for people. The Raeq for most of the analyzed samples (416 in total) was lower than the maximum admissible value of 370 Bqkg-1 set in the UNSCEAR report. The absorbed gamma dose rate in air was found to vary from 0.030 mGyh-1 to 1.328 mGyh-1 which in some cases exceeded indoor dose rates in Europe. The obtained values for annual effective dose exceed the limits of 0.41 mSv given in literature for about 5 % of measured samples, while values of Hex were higher than unity for three samples of cement, eight samples of granite, and one sand sample. As a possible source of elevated effective dose, the radon exhalation from building materials was estimated using the parameters given in literature. The internal dose due to 222Rn exhaled from the building material was found to be up to nine times higher than external dose due to 226Ra content in some cases.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3