Visible light absorption of TiO2 nanoparticles surface-modified with vitamin B6: A comparative experimental and DFT study

Author:

Kovac Tijana1,Dzunuzovic Enis2,Dzunuzovic Jasna3,Milicevic Bojana4ORCID,Sredojevic Dusan4,Brothers Edward5,Nedeljkovic Jovan4

Affiliation:

1. Faculty of Technology and Metallurgy, Innovation Center, Belgrade

2. Faculty of Technology and Metallurgy, Belgrade

3. Institute of Chemistry, Technology and Metallurgy, Center of Excellence in Environmental Chemistry and Engineering, Belgrade

4. Institute of Nuclear Sciences Vinča, Belgrade

5. Texas A&M University at Qatar, Doha, Qatar

Abstract

Surface modification of titanium dioxide nanoparticles (TiO2 NPs) with the biologically active molecule pyridoxine hydrochloride (vitamin B6) was found to alter the optical properties. Microstructural characterization involving transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis revealed that the anatase TiO2 NPs had a narrow size distribution with an average diameter of 45 ?. The absorption onset of the surface-modified TiO2 samples was red-shifted by about 0.4 eV compared to the unmodified particles. The mode of binding between vitamin B6 and the surface Ti atoms was investigated by Fourier transform infrared spectroscopy (FTIR). From the Benesi? Hildebrand plot, the stability constant of the surface complex was found to be of the order 102 M-1. The experimental findings were supported by detailed quantum chemical calculations based on the density functional theory (DFT). Agreement was found between the experimentally measured absorption spectra of the TiO2 NPs surface-modified with vitamin B6 and the theoretically calculated electronic excitation spectra of the corresponding model system.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3