The effects of β-lactam antibiotics and hygromycin B on de novo shoot organogenesis in apple cv. Golden Delicious

Author:

Stanisic Mariana1ORCID,Ninkovic Slavica1ORCID,Savic Jelena1ORCID,Cosic Tatjana1ORCID,Mitic Nevena1

Affiliation:

1. Institute for Biological Research “Siniša Stanković”, Department for Plant Physiology, Belgrade

Abstract

Since the genetic transformation of the apple is strongly genotype-dependent and generally inefficient, the evaluation of factors affecting shoot regeneration are crucial for the establishment of a successful transformation process. In this report, we evaluated the effects of the ?-lactam antibiotics meropenem and timentin on in vitro regeneration via de novo shoot organogenesis from leaf explants of apple cv. Golden Delicious, as well as on the growth of the Agrobacterium tumefaciens strain EHA 105, and compared them with the commonly used ?-lactam cefotaxime. Also, we report for the first time the effect of hygromycin B as a selective agent in the domesticated apple, as regards shoot regeneration and shoot multiplication efficiency. We observed that cefotaxime and timentin at concentrations higher than 100 mg L-1 were sufficient to prevent Agrobacterium growth during a two-week period, while meropenem exhibited an inhibitory effect on bacterial growth at all tested concentrations (25-150 mg L-1). Cefotaxime at a concentration of 300 mg L-1 increased the number of regenerated shoots per explant (9.39) in comparison with the control (7.67). In contrast to cefotaxime, meropenem and timentin caused a decrease in shoot regeneration efficiency, but larger and more developed shoots were obtained on meropenem (25-125 mg L-1) after the same period of cultivation. Hygromycin B at a concentration of 5 mg L-1 or higher completely inhibited shoot regeneration and induced explant tissue necrosis. Therefore, the selection procedure with a final concentration of 4 mg L-1 throughout organogenesis and 10 mg L-1 for further shoot growth and multiplication is recommended for an efficient transformation process in apple cv. Golden Delicious.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3