A self-adaptive method for split common null point problems and fixed point problems for multivalued Bregman quasi-nonexpansive mappings in Banach spaces

Author:

Jailoka Pachara1,Suantai Suthep2,Sunthrayuth Pongsakorn3

Affiliation:

1. Department of Mathematics, School of Science, University of Phayao, Phayao, Thailand

2. Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand + Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

3. Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathumthani, Thailand

Abstract

In this paper, we propose a self-adaptive algorithm for solving the split common null point problem and the fixed point problem for multivalued Bregman quasi-nonexpansive mappings in Banach spaces. We prove that the sequence generated by our iterative scheme converges strongly to a common solution of the above-mentioned problems under some suitable conditions. We also apply our main result to split feasibility problems in Banach spaces. Finally, numerical examples are given to support our main theorem. The results presented in this paper improve and extend many recent results in the literature.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference59 articles.

1. Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, Lect. Notes Pure Appl. Math. (1996) 15-50.

2. Y. I. Alber, D. Butnariu, Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces, J. Optim. Theory Appl. 92 (1997) 33-61.

3. Y. I. Alber, I. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Type, Springer, Netherlands, 2006.

4. A. S. Alofi, S. M. Alsulami, W. Takahashi, Strongly convergent iterative method for the split common null point problem in Banach spaces, J. Nonlinear Convex Anal. 17 (2016) 311-324.

5. R. P. Agarwal, D. O’Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian Type Mappings with Applications, Springer, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3