Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator

Author:

Kilic Mustafa1,Abdulvahitoglu Asli1

Affiliation:

1. Adana Science and Technology University, Department of Mechanical Engineering, Adana, Turkey

Abstract

The present study is focused on the numerical investigation of heat transfer from a heated surface by using swirling jets and nanofluids. Consequences of discrete Reynolds number, inlet configuration and types of nanofluids (pure water, Al2O3- -H2O, Cu-H2O, and TiO2-H2O) were studied numerically on heat transfer and fluid-flow. As a base coolant Al2O3-H2O nanofluid was chosen for all parameters. So, a numerical analysis was done by using a k-? turbulent model of PHOENICS CFD code. It is determined that increasing Reynolds number from Re = 12000-21000 causes an increment of 51.3% on average Nusselt Number. Using 1-jet causes an increase of 91.6% and 29.8% on average Nusselt number according to the channel flow and 2-jet. Using Cu-H2O nanofluid causes an increase of 3.6%, 7.6%, and 8.5% on the average Nusselt number with respect to TiO2-H2O, Al2O3-H2O and pure water.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3