Multiferroics application: Magnetic controlled piezoelectric transformer

Author:

Kozielski Lucjan1,Clemens Frank2

Affiliation:

1. University of Silesia, Department of Materials Science, Sosnowiec, Poland

2. EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Duebendorf, Switzerland

Abstract

Dense lead zirconate titanate (PZT) ceramics is typically used for fabrications of high power piezoelectric devices. In case of lanthanum and iron ions doping into PZT solid solution (PLFZT), material exhibiting both piezoelectric and magnetic properties can be obtained. Among many investigated compositions particularly the Pb0.91(La0.5Fe0.5)0.09(Zr0,65Ti0,35 )0,9775O3, located near the morphotropic boundary, exhibits the highest magnetoelectric effect. This coupling between magnetization and polarization is achieved by the Fe3+ ions addition that sufficiently rise sensitivity to magnetic field without decreasing the dielectric loss coefficient at the same time. Taking advantage of this specific material the piezoelectric transformer (PT) with magnetic feedback was fabricated, which converts an electrical AC input voltage into ultrasonic vibrations and reconverts back to an output as AC voltage proportionally to the magnetic field intensity. In the present study the unipoled radial mode piezoelectric transformers based on PLFZT-type ceramics prepared by hot-press sintering have been investigated. The effect of the magnetic field on the operating properties was measured for piezoelectric transformer operating at the first resonance frequency.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3