Affiliation:
1. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Abstract
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to B/eghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.
Publisher
National Library of Serbia
Subject
Applied Mathematics,Mechanical Engineering,Computational Mechanics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献