Degradation of stator insulation of high-voltage asynchronous machines in gamma and neutron radiation field

Author:

Kartalovic Nenad1,Jokanovic Bojan2,Bebic Milan2,Lazarevic Djordje3

Affiliation:

1. Electrical Engineering Institute “Nikola Tesla”, University of Belgrade, Belgrade, Serbia

2. Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia

3. Nuclear Facilities of Serbia, Belgrade, Serbia

Abstract

This paper presents the results of an examination of function stability of high-voltage asynchronous motors exposed to ambient strain caused by combined neutron and gamma radiation. This problem appears in practice when a high-voltage asynchronous motor is used in nu- clear power plants where it can be exposed to this type of ambient strain. The failure of the engine's operation under such conditions may have unexpected consequences. As more than 50 % of failure (malfunction) of high-voltage asynchronous motors is caused by damage to stator insulation, the focus of the paper was on testing the effects of combined neutron and gamma radiation on stator insulation. The tests were carried out under well-controlled laboratory conditions on samples taken from both new and used factory coil windings. Two-layer samples were used to record partial discharge threshold voltage and breakdown voltage. By comparing the experimentally obtained results with the applicable mathematical-statistical procedure, an estimate was made of the aging acceleration of stator insulation and the time duration of reliable operation of high-voltage asynchronous motor was determined by life-time exponent.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3