Evaluation of thermochemical and kinetic characterisation of lignite and municipal solid waste and their blends for sustainable and clean conversion under TGa

Author:

Siddiqi Muhammad1,Xiaomin Liu1,Ayub Salman2,Abbas Naqvi3,Shafique Usman2,Qureshi Tayyab4,Iqbal Tanveer2

Affiliation:

1. School of Energy and Power Engineering, Xian Jiaotong University, Xian, China

2. Centre for Energy Research and Development (CERAD), University of Engineering and Technology, Lahore, Punjab, Pakistan

3. Department of Mechanical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad, Punjab, Pakistan

4. Centre for Energy Research and Development (CERAD), University of Engineering and Technology, Lahore, Punjab, Pakistan + Department of Technology, University of Lahore, Lahore, Punjab, Pakistan

Abstract

With the expansion in generation of municipal solid waste (MSW) due to population growth, and also increase the demand of clean energy production, and the curb of landfilling of MSW, it has established the need of our society to use MSW with the available lignite under-the-vision of waste-to-energy (WtE). The WtE technique is an environment-friendly way for disposing of MSW into the useful way globally. The thermal characteristics of MSW with lignite and their blends were investigated to analyze thermal stability. Blends of 10%, 20%, 30%, and 50% of MSW with lignite were prepared and tested in thermogravimetric analyzer from ambient to 1000?C under heating-rate 10?C per minute. This study revealed that steep in weight-loss profiles in thermogravimetric curves was reduced as MSW contents increased. It was observed, MSW proportions in blends significantly affect the combustion profiles and associated parameters like ignition temperature, weight-loss and activation energy. The blends showed combustion properties of MSW and lignite as maximum weight-loss occurred between the individual fuels. Moreover, results indicated that with low proportion of MSW as 10% didn't significantly affect the combustion behavior and properties. While blend 30% shows the more thermal stability than other samples. Thermal profiles of all blended samples occurred in between of the parent samples. Results obtained from experiment help to predict co-combustion thermal behavior of MSW and lignite in existing facilities to generate clean-energy in sustainable way from commercial power plants. The kinetic parameters obtained by Horowitz-Metzger method showed improvement in ignition performance and find the difference between blends.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3