How to combine text-mining methods to validate induced Verb-Object relations?

Author:

Béchet Nicolas1,Chauché Jacques2,Prince Violaine2,Roche Mathieu3

Affiliation:

1. GREYC - UMR, CNRS - Univ. de Caen Basse-Normandie, Caen Cedex, France

2. LIRMM - UMR, CNRS - Univ. Montpellier, Montpellier, France

3. LIRMM - UMR, CNRS - Univ. Montpellier, Montpellier, France + TETIS - Cirad, Montpellier Cedex, France

Abstract

This paper describes methods using Natural Language Processing approaches to extract and validate induced syntactic relations (here restricted to the Verb-Object relation). These methods use a syntactic parser and a semantic closeness measure to extract such relations. Then, their validation is based on two different techniques: A Web Validation system on one part, then a Semantic-Vectorbased approach, and finally different combinations of both techniques in order to rank induced Verb-Object relations. The Semantic Vector approach is a Roget-based method which computes a syntactic relation as a vector. Web Validation uses a search engine to determine the relevance of a syntactic relation according to its popularity. An experimental protocol is set up to judge automatically the relevance of the sorted induced relations. We finally apply our approach on a French corpus of news by using ROC Curves to evaluate the results.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topic segmentation via community detection in complex networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2016-06

2. Reconstruction of itineraries from annotated text with an informed spanning tree algorithm;International Journal of Geographical Information Science;2015-11-09

3. Supervised learning for building stemmers;Journal of Information Science;2015-03-06

4. Improving business helpdesk systems with intelligent search mechanisms;Ekonomski pogledi;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3