Phase evolution in an MCrAlY coating during high temperature exposure

Author:

Costa C.1,Barbareschi E.2,Guarnone P.2,Borzone G.1

Affiliation:

1. Department of Chemistry and Industrial Chemistry (DCCI), University of Genoa, Genoa, Italy

2. Ansaldo Energia S.p.A. Corso Perrone, Genoa, Italy

Abstract

MCrAlY (M = Ni and/or Co) coating systems are often applied on gas turbine blades and vanes to withstand the challenges of severe conditions. During service MCrAlY coatings are subjected to microstructural transformations that can be an indication of components service temperatures. The development of indirect methods to measure this parameter is of great concern in the gas turbine ?world? due to the impossibility of direct measurements. In the present work the evolution of an MCrAlY coating applied on Rene80 by LPPS (Low Pressure Plasma Spray) technique has been studied in order to verify if it was possible to identify a microstructural indicator of the service temperature. The specimens were exposed for different lengths of time at test temperatures of 700 - 800 - in order to characterize the phase evolution with time and temperature. Selective etching was employed for optical metallographic investigation. Scanning Electron Microscopy (SEM) observation combined with Electron Backscattered Diffraction (EBSD) and Energy Dispersive Spectroscopy (EDS) showed that the coating is composed of a ?- Co matrix, ?-AlNi, ?-(Cr, Co), Cr carbide and Y-rich phases. Among these phases, the sigma phase resulted in a temperature - composition dependence that can be a useful tool for evaluating the local service temperature and modelling the residual lifetime.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3