Fabrication of Al-based composites reinforced with Al2O3-Tib2 ceramic composite particulates using vortex-casting method

Author:

Roshan M.R.1,Mousavian Taherzadeh2,Ebrahimkhani H.2,Mosleh A.3

Affiliation:

1. Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

2. Department of Metallurgy, Zanjan Branch, Islamic Azad University, Zanjan, Iran

3. Department of Materials Science and Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Vortex casting is one of the simplest methods of producing metal matrix composites (MMCs). However, this simple method does have some drawbacks, which reduce the mechanical properties of the produced composites. In this study, we tried to modify the process of composite production before, during, and after the casting procedure. Low-cost Al2O3-TiB2 ceramic composite particles, which produced after combustion synthesis, were used as reinforcement. These powders, which are thermodynamically stable with molten aluminum below 900?C, were mixed with aluminum and magnesium powders before casting using ball milling and the mixed powders were injected into the molten metal (pure Al). This process was applied to enhance the wettability of ceramic particles with molten aluminum. After casting, warm equal channel angular pressing (ECAP) and hot extrusion processes were applied to investigate their effects on the mechanical properties of the final composites. It was revealed that both warm ECAP and hot extrusion have a strong influence on increasing the mechanical properties mainly due to decreasing the amount of porosities.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3