Modeling of combustion synthesis in multilayer gasless system

Author:

Prokof’ev Vadim1,Khudyakova Taisia1

Affiliation:

1. Tomsk State University, Tomsk, Russia + Tomsk Scientific Center, Tomsk, Russia

Abstract

A combustion model for a flat layered composition has been developed, where chemically active layers alternate with inert metallic layers with high thermal conductivity. The heat exchange between the layers was specified by the conjugate boundary conditions. A numerical study of gasless combustion of a multi-layer system with heat-conjugated layers of two types was performed. Optimal layer sizes and parameters of the layer system were obtained to provide the maximum burning rate of the layer package. The effect of increasing the burning rate was found to be associated with heat recovery and an increase in the effective thermal conductivity of the system. The concentration limits of combustion were determined depending on the volume content of the inert element. Replacing the system of inert layers with that of low-calorie mixture layers leads to a model for synthesis of inorganic materials in the "chemical furnace" mode.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3