Study on influence of forced vibration of cooling channel on flow and heat transfer of hydrocarbon fuel at supercritical pressure

Author:

Chen Mantang1,Hu Yin2,Han Zhixiong3,Peng Zilong2,Zan Hao2

Affiliation:

1. Beijing Power Machinery Institute, Beijing, People’s Republic of China

2. Jiangsu University of Science and Technology, Jiangsu, People’s Republic of China

3. Harbin Institute of Technology, Heilongjiang, People’s Republic of China

Abstract

The cooling channel of a scramjet is the fundamental structure of the active thermal protection for an engine. Till now, studies have focused mainly on the steady-state flow and heat transfer process in the cooling channel. However, the vibration intensity of an engine increases sharply as the flight speed increases, because of which, the flow and heat exchange mechanisms based on the cooling channel under stable conditions cannot be applied under vibration. In this study, experimental methods are used to study the characteristics of the forced vibration of a cooling channel on the flow and heat transfer of hydrocarbon fuel at supercritical pressure. In addition, the influences of different vibration frequencies and vibration amplitudes on the flow and heat transfer are analyzed. The research results show that at supercritical pressure, when the fuel temperature is below the critical temperature and the inner wall temperature is above the critical temperature, external vibrations would enhance the heat transfer characteristics of the cooling channel. However, when the pressure and temperature are unstable, the forced vibration of the cooling channel would suppress the instability of temperature and pressure while strengthening the heat exchange.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3