Evaluation of Takagi-Sugeno-Kang fuzzy method in entropy-based detection of DDoS attacks

Author:

Petkovic Miodrag1ORCID,Basicevic Ilija1,Kukolj Dragan1ORCID,Popovic Miroslav1ORCID

Affiliation:

1. University of Novi Sad, Novi Sad

Abstract

The detection of distributed denial of service (DDoS) attacks based on internet traffic anomalies is a method which is general in nature and can detect unknown or zero-day attacks. One of the statistical characteristics used for this purpose is network traffic entropy: a sudden change in entropy may indicate a DDoS attack. However, this approach often gives false positives, and this is the main obstacle to its wider deployment within network security equipment. In this paper, we propose a new, two-step method for detection of DDoS attacks. This method combines the approaches of network traffic entropy and the Takagi-Sugeno-Kang fuzzy system. In the first step, the detection process calculates the entropy distribution of the network packets. In the second step, the Takagi-Sugeno-Kang fuzzy system (TSK-FS) method is applied to these entropy values. The performance of the TSK-FS method is compared with that of the typically used approach, in which cumulative sum (CUSUM) change point detection is applied directly to entropy time series. The results show that the TSK-FS DDoS detector reaches enhanced sensitivity and robustness in the detection process, achieving a high true-positive detection rate and a very low false-positive rate. As it is based on entropy, this combined method retains its generality and is capable of detecting various types of attack.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3