Measurement of absorbed dose rate in water phantom maintained at body temperature by 60Co irradiator – comparison of experimental results and Monte Carlo simulation

Author:

Kye Yong-Uk1,Kim Hyo-Jin1,Lee Ji-Eun1,Seo Yun-Jae1,Kim Jung-Ki1,Jo Wol-Soon1,Lee Dong-Yeon2,Kang Yeong-Rok1

Affiliation:

1. Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea

2. Department of Radiological Science, College of Nursing, Healthcare Sciences and Human Ecology, Dong-eui University, Busan, Republic of Korea

Abstract

To analyze the biological effects of radiation, it is important that the conditions of in vitro experiments match closely with those of in vivo experiments. In this study, we constructed an irradiation system to conduct irradiation experiments under conditions similar to those of in vivo experiments. The Dongnam Institute of Radiological and Medial Sciences has a gamma irradiator including 60Co radioisotope for research purposes and accreditation for standard calibration of the ion chamber. The temperature of the water phantom was maintained the same as that of the normal human body, and the physical dosimetry was carried out accurately using the ion chamber with traceability. We report the measurement of lateral profiles, depth profiles, and absorbed dose rate in water, Dw, at the irradiation location of the blood samples using a farmer-type ion chamber. We simulated the source, collimator, irradiator, phantom, and extra structure of the gamma irradiation system using the Monte Carlo code and compared the simulated and the experimental results. The experimentally and theoretically evaluated dose rates were 0.2975 ? 0.0055 Gymin?1 (at coverage factor k = 2) and 0.2978 ? 0.0052 Gymin?1 (at coverage factor k = 2) at source-to-surface distance of 100 cm and 5 gcm?2 depth in the water phantom, respectively. Blood irradiation will be conducted in vitro, under conditions similar to in vivo conditions, to provide the dose-response curve based on dosimetry with traceability.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3