Stabilization of gas-filled surge arrester’s characteristics by use of ionizing radiation

Author:

Brajovic Dragan1,Vujisic Milos1ORCID,Stojkanovic Mirko1,Kovacevic Uros1,Vasic Aleksandra2

Affiliation:

1. Faculty of Electrical Engineering, Belgrade

2. Faculty of Mechanical Engineering, Belgrade

Abstract

This paper investigates the stabilization of electrical discharges in gases by means of external ionizing radiation. Discharges in a gas-filled surge arrester model were studied in both passive and active regimes of the device. An originally developed model of the gas-filled surge arrester was used. Gas pressure and the interelectrode gap were the variable parameters in our measurements. Applied radiation types included ?-particles, ?-rays, X-rays, and neutrons. Measurements were performed under highly controlled laboratory conditions. The combined measurement uncertainty of the applied procedure was estimated as being under the 5% level. The results obtained are followed by a theoretical explanation. The crucial result is the conclusion that ionizing radiation does not necessarily degrade the gas-filled surge arrester?s functionality but that it, rather, improves it under certain conditions.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3