Heat transfer analysis in the time-dependent axisymmetric stagnation point flow over a lubricated surface

Author:

Mahmood Khalid1,Sajid Muhammad1,Ali Nasir1,Javed Tariq1

Affiliation:

1. International Islamic University, Department of Mathematics and Statistics, Islamabad, Pakistan

Abstract

In this paper time-dependent, 2-D, axisymmetric flow and heat transfer of a viscous incompressible fluid impinging orthogonally on a disc is examined. The disc is lubricated with a thin layer of power-law fluid of variable thickness. It is assumed that surface temperature of the disc is time-dependent. Continuity of velocity and shear stress at the interface layer between the fluid and the lubricant has been imposed to obtain the solution of the governing partial differential equations. The set of partial differential equations is reduced into ordinary differential equations by suitable transformations and are solved numerically by using Keller-Box method. Solutions are presented in the form of graphs and tables in order to examine the influence of pertinent parameters on the flow and heat transfer characteristics. An increase in lubrication results in the reduction of surface shear stress and consequently viscous boundary layer becomes thin. However, the thermal boundary layer thickness increases by increasing lubrication. It is further observed that surface shear stress and heat transfer rate at the wall enhance due to unsteadiness. The results for the steady case are deduced from the present solutions and are found in good agreement with the existing results in the literature.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3