Affiliation:
1. Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
Abstract
The neuroprotective effect of ginsenoside-Mc1 (GMc1) in hyperlipidemic rats in the setting of cerebral ischemiareperfusion injury (I/RI), as well as the role of mitochondrial ATP-sensitive potassium (mitoKATP) channels and oxidative/ endoplasmic reticulum (ER) stress, was investigated. Hyperlipidemia (8 weeks) was induced by a high-fat diet in Sprague Dawley rats. GMc1 (10 mg/kg, i.p.) was given to hyperlipidemic rats daily for one month before I/RI. Rat brains were subjected to 2 h of local ischemia followed by 24 h reperfusion. The cerebral infarcted injury was measured by triphenyltetrazolium chloride staining and the levels of oxidative stress indicators were detected by ELISA and spectrophotometry. A fluorometric technique was employed to evaluate mitochondrial function. Western blotting was used to detect changes in the expression of ER stress proteins. GMc1 reduced cerebral infarct volume in hyperlipidemic rats in comparison to untreated ones (P<0.01). GMc1 reduced cerebral infarct volume in hyperlipidemic rats as compared to untreated rats (P<0.01). GMc1 significantly decreased mitochondrial membrane depolarization, mitochondrial reactive oxygen species (mitoROS) and malondialdehyde levels (P<0.01), while increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) (P<0.001). GMc1 administration reduced the expression of ER stress markers, including phosphorylated (p)-endoplasmic reticulum kinase (PERK), p-eukaryotic translation initiation factor 2 subunit 1 (elF2?), and C/EBP homologous protein (CHOP). Inhibition of mitoKATP channels with hydroxydecanoate significantly eliminated the protective impacts of GMc1 in hyperlipidemic rats subjected to cerebral I/RI. The neuroprotective effect of GMc1 preconditioning was remarkably improved by increasing mitoKATP channel activity and decreasing oxidative and ER stress levels in hyperlipidemic rats, implying that this compound could be an appropriate candidate for reducing cerebral I/RI in comorbidities.
Publisher
National Library of Serbia
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献