Numerical study of flow inhomogeneity and heat transfer enhancement in structured packed beds

Author:

Wang Jingyu1,Yang Jian1,Sunden Bengt2,Wang Qiuwang3

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China + Division of Heat Transfer, Department of Energy Sciences, Lund University, Skåne, Sweden

2. Division of Heat Transfer, Department of Energy Sciences, Lund University, Skåne, Sweden

3. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

Packed beds are widely used in engineering applications due to their high specific surface area and good heat transfer characteristics. A grille-sphere composite packed bed is proposed previously and has been proved to have higher overall heat transfer coefficient than the simple cubic packing structure. In the present paper, the flow inhomogeneities in both the grille-sphere composite packed bed and the simple cubic packing are studied and the relationship between the flow inhomogeneity and the heat transfer characteristics is revealed by numerical simulations. The simulations are performed on ANSYS FLUENT software. The turbulence flow is modelled by the renormalization group k- model. Both dispersion of the velocity distribution and the residence time distribution are employed to assess the flow maldistribution. When the inlet velocity equals 2.17 m/s, the variance of the residence time distribution of the composite packed bed is 5.91% smaller than that of the simple cubic packing while the Nusselt number is 10.64% higher. The results indicate that less flow maldistribution can lead to heat transfer enhancement.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3