A study on transformation of some transition metal oxides in molten steelmaking slag to magnetically susceptible compounds

Author:

Shatokha V.1,Semykina A.2,Nakano J.3,Sridhar S.4,Seetharaman S.2

Affiliation:

1. National Metallurgical Academy of Ukraine, Dnipropetrovsk, Ukraine

2. Royal Institute of Technology, Stockholm, Sweden

3. URS Corp, Albany, USA

4. Carnegie Mellon University, Pittsburgh, USA

Abstract

Sustainable development of steelmaking requires solving a number of environmental problems. Economically feasible and environmentally friendly recycling of slag wastes is of special concern. Research of the team representing National Metallurgical Academy of Ukraine, Royal Institute of Technology, Carnegie Mellon University and URS Corp revealed a possibility of the controlled phase transformations in the liquid silicate melts followed by formation of the magnetically susceptible compounds. This approach enables selective recovery of metal values from slag. In this paper, the results obtained and further research directions are discussed. A possibility to exploit physical properties of the transition metals, typical for the metallurgical slags (such as Fe, Mn, V and others), and corresponding specific properties of their compounds, such as non-stoichiometry, mixed valency, pseudomorphosis, thermodynamic stability etc, in production of value-added materials from slag wastes is discussed. The results of the studies of thermodynamics and kinetics of oxidation in slags followed by phase transformation with binary, ternary and complex oxides under various physicochemical conditions are discussed in the view of their application for production of the materials with predefined physical properties. Peculiarities of precipitation in slags with various basicities are analysed and demonstrate capacity of the proposed approach in the production of the material with a given structure and size - for example, nano-sized crystals with structure of spinel. The approaches towards industrial realization of the developed method are also discussed.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3