Nitrogen transformation in acid soils subjected to pH value changes

Author:

Kresovic Mirjana1,Jakovljevic M.1,Blagojevic S.1,Zarkovic Branka2

Affiliation:

1. Poljoprivredni fakultet, Beograd

2. nema

Abstract

The aim of this investigation was to determine which application of fertilizer and lime material does not form toxic quantities of nitrite nitrogen and when the losses by denitrification are the lowest in the examined acid soils. Investigations were performed on pseudogley soils of different acidity. Changes of available nitrogen forms were examined by the method of short-term incubation experiments. Experimental treatments were without the use of mineral fertilizers and with application of (NH4)2SO4 (100 ppm of NO3-N) and KNO3 (100 ppm of NO3-N); with and without addition of Ca(OH)2 (50% of full neutralization and full neutralization). When (NH4)2SO4 was used, nitrites occurred in both examined soils as a result of decelerated nitrification and when KNO3 was added as a result of chemical denitrification. Application of Ca(OH)2 caused the intensification of mineralization, nitrification and biological denitrification processes. When a higher dose of lime material was used (full neutralization), nitrites occurred in larger quantities as a result of the strengthening of nitrification and denitrification processes. Application of a lower lime dose caused nitrite occurrence in smaller quantities. Therefore, in these soils as well as in soils of similar chemical properties, application of lower doses of lime material can be recommended (<50% of full neutralization) as well as the application of ammonium fertilizer, bearing in mind that in such conditions losses of added fertilizer in the denitrification process are reduced and the occurrence of nitrites as an intermediate product of this process is prevented.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3