Analytical solutions of nonlinear Klein-Gordon equations using Multistep Modified Reduced Differential Transform Method

Author:

Che Hussin1,Ismail Ahmad2,Kilicman Adem3,Azmi Amirah2

Affiliation:

1. Universiti Sains Malaysia, School of Mathematical Sciences, USM, Gelugor, Penang, Malaysia + Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia

2. Universiti Sains Malaysia, School of Mathematical Sciences, USM, Gelugor, Penang, Malaysia

3. Universiti Putra Malaysia, Institute for Mathematical Research, Serdang Selangor, Malaysia

Abstract

This paper explores the approximate analytical solution of non-linear Klein-Gordon equations (NKGE) by using multistep modified reduced differential transform method (MMRDTM). Through this proposed strategy, the non-linear term is substituted by associating Adomian polynomials obtained by utilization of a multistep approach. The NKGE solutions can be obtained with a reduced number of computed terms. In addition, the approximate solutions converge rapidly in a wide time region. Three examples are provided to illustrate the effectiveness of the proposed method to obtain solutions for the NKGE. Graphical results are shown to represent the behavior of the solution so as to demonstrate the validity and accuracy of the MMRDTM.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A semi-analytical solutions of the multi-dimensional time-fractional Klein-Gordon equations using residual power series method;Physica Scripta;2024-08-29

2. Approximate Analytical Solutions of Bright Optical Soliton for Nonlinear Schrödinger Equation of Power Law Nonlinearity;Baghdad Science Journal;2021-03-30

3. A periodic solution of the fractional sine-Gordon equation arising in architectural engineering;Journal of Low Frequency Noise, Vibration and Active Control;2020-04-14

4. Approximate analytical solutions of fractional nonlinear Schrodinger equations using multistep modified reduced differential transform method;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3