Laminar natural convection of non-Newtonian power-law fluid in an eccentric annulus

Author:

Benhizia Oussama1,Bouzit Mohamed2,Dellil Ahmed1

Affiliation:

1. Department of ELM, Institute of Maintenance and Industrial Safety, University of Oran 2 Mohamed ben Ahmed, Oran, Algeria

2. University Centre Belhadj Bouchaib, Ain Temouchent, Algeria

Abstract

This work is about studying the natural convection of two-dimensional steady state non-Newtonian power law fluid numerically. The inner cylinder was put eccentrically into the outer one. The cylinders are held at constant temperatures with the inner one heated isothermally at temperature Th and the outer one cooled isothermally at temperature Tc (Th>Tc). The simulations have been taken for the parameters 103?Ra?105, 10?Pr?103, 0.6?n?1.4, 0???0.9 and an inclination angle ? from 0? up to 90?. The average Nusselt numbers for the previous parameters are obtained and discussed numerically. The results revealed that the average Nusselt number has the highest values when n=0.6, Ra=105 at ?=0 which is a signal for the large transfer herein and has the lowest values for n=1.4, Ra=103 at ?=90? which is a signal that the transfer is by conduction more than convection. Furthermore, the increasing of eccentricity causes an increase in the Nusselt number for all the cases. Finally, the best case where we can get the best heat transfer is at ? = 0, ?=0.9 among them all. The results have compared with some precedent works and showed good agreement.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3