Geant4-based comprehensive study of the absorbed fraction for electrons and gamma-photons using various geometrical models and biological tissues

Author:

Rahman Ziaur1,Rehman Shakeel2,Mirza Sikander2,Arshed Waheed1,Mirza Nasir2

Affiliation:

1. Pakistan Institute of Nuclear Science & Technology, Health Physics Division, Nilore, Islamabad, Pakistan

2. Pakistan Institute of Engineering & Applied Sciences, Department of Physics & Applied Mathematics, Nilore, Islamabad, Pakistan

Abstract

The Geant4-based comprehensive model has been developed to predict absorbed fraction values for both electrons and gamma photons in spherical, ellipsoidal, and cylindrical geometries. Simulations have been carried out for water, ICRP soft-, brain-, lung-, and ICRU bone tissue for electrons in 0.1 MeV-4 MeV and g-photons in the 0.02 MeV-2.75 MeV energy range. Consistent with experimental observations, the Geant4-simulated values of absorbed fractions show a decreasing trend with an increase in radiation energy. Compared with NIST XCOM and ICRU data, the Geant4-based simulated values of the absorbed fraction remain within a 4.2% and 1.6% deviation, respectively. For electrons and g-photons, the relative difference between the Geant4-based comprehensive model predictions and those of Stabin and Konijnenberg's re-evaluation remains within a 6.8% and 7.4% range, respectively. Ellipsoidal and cylindrical models show 4.9% and 10.1% higher respective values of absorbed dose fractions relative to the spherical model. Target volume dependence of the absorbed fraction values has been found to follow a logical behavior for electrons and Belehradek's equation for g-photons. Gamma-ray absorbed fraction values have been found to be sensitive to the material composition of targets, especially at low energies, while for elections, they remain insensitive to them.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation and measurement of X-ray scattered radiation in radiodiagnosis;Nuclear Technology and Radiation Protection;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3