Feasibility study of the university of Utah TRIGA reactor power upgrade - part II: Thermohydraulics and heat transfer study in respect to cooling system requirements and design

Author:

Babitz Philip1,Choe Dongok1,Jevremovic Tatjana1

Affiliation:

1. The University of Utah, Utah Nuclear Engineering Program, Salt Lake City, USA

Abstract

The thermodynamic conditions of the University of Utah's TRIGA Reactor were simulated using SolidWorks Flow Simulation, Ansys, Fluent and PARET-ANL. The models are developed for the reactor's currently maximum operating power of 90 kW, and a few higher power levels to analyze thermohydraulics and heat transfer aspects in determining a design basis for higher power including the cost estimate. It was found that the natural convection current becomes much more pronounced at higher power levels with vortex shedding also occurring. A departure from nucleate boiling analysis showed that while nucleate boiling begins near 210 kW it remains in this state and does not approach the critical heat flux at powers up to 500 kW. Based on these studies, two upgrades are proposed for extended operation and possibly higher reactor power level. Together with the findings from Part I studies, we conclude that increase of the reactor power is highly feasible yet dependable on its purpose and associated investments.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3