A Monte Carlo approach to calculate the production prerequisites of 124I radioisotope towards the activity estimation

Author:

Azizakram Hamid1,Sadeghi Mahdi2,Ashtari Parviz3,Zolfagharpour Farhad1

Affiliation:

1. University of Mohaghegh Ardabili, Department of Physics, Ardabil, Iran

2. Iran University of Medical Sciences, School of Medicine, Medical Physics Department, Tehran, Iran

3. Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Abstract

The Monte Carlo simulation code MCNPX has been used to simulate the production of 124I by 124,125Te(p, xn) and 123,124Te(d,xn) reactions to form high activity 124I. For this reason, the TALYS-1.8 and ALICE/ASH codes were used to calculate the reaction cross-section. The optimal energy range of projectile is selected for this production by identifying the maximum cross-section and the minimum impurity due to other emission channels. Target geometry is designed by SRIM code based on stopping power calculations with identical dimensions as the experimental data. The thick target yield of reactions is predicted because of the excitation functions and stopping power. All of the prerequisites obtained from the above interfaces are adjusted in MCNPX code and the production process is simulated according to benchmark experiments. Thereafter, the energy distribution of proton in targets, the amount of residual nuclei during irradiation, were calculated. The results are in good agreement with the reported data, thus confirming the usefulness and accuracy of MCNPX as a tool for the optimization of other radionuclides production. Based on the results, the 124Te(p,n)124I process seems to be the most likely candidate to produce the 124I in low-energy cyclotrons.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3