Evaluation of the effects of wastewater heat pump integration into district heating systems by simulation

Author:

Ivezic Dejan1ORCID,Zivkovic Marija1,Manic Dimitrije2,Madzarevic Aleksandar1,Pavlovic Boban1ORCID,Danilovic Dusan1ORCID

Affiliation:

1. University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia

2. University of Belgrade, Faculty of Mechanical Engineering, Innovation Centre, Belgrade, Serbia

Abstract

The integration of wastewater heat pumps (using purified water) in district heating systems is analyzed in this paper. The simulation procedure is proposed to analyze the impacts of stochasticity of purified water temperature and flow to heat pump integration and operation. The analysis includes calculation of the daily and seasonal coefficient of performance, as well as fossil fuel savings and CO2 emission reduction due to wastewater heat pump use. The proposed procedure is implemented for the case study in the city of Sabac (Serbia) and obtained results are discussed and evaluated. The historical data for two heating seasons was used for simulation. It was shown that the wastewater heat pump could provide 27-28% savings in fuel consumption, and 3.6-4.1% GHG emissions reduction, while the seasonal COP could be 4.2 - 4.3. Simulation based approach shows approximately 40% less savings of fuel consumption, compared to the approach based on the average values of heat pump input parameters.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3