Physicochemical characterisation of dihydro-alpha-lipoic acid interaction with human serum albumin by multi-spectroscopic and molecular modelling approaches

Author:

Gligorijevic Nikola1ORCID,Sukalovic Vladimir2ORCID,Minic Simeon3ORCID,Miljus Goran1ORCID,Nedic Olgica1ORCID,Penezic Ana1ORCID

Affiliation:

1. Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Belgrade, Serbia

2. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

3. University of Belgrade, Faculty of Chemistry, Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Belgrade, Serbia

Abstract

The binding of a popular food supplement and well-known antioxidant, dihydro-alpha-lipoic acid (DHLA) to human serum albumin (HSA) was characterised. The binding was monitored by several spectroscopic methods together with the molecular docking approach. HSA was able to bind DHLA with moderate affinity, 1.00?0.05?104 M-1. Spectroscopic data demonstrated that the preferential binding site for DHLA on HSA is IIA (Sudlow I). Both experimental and molecular docking analysis identified electrostatic (salt bridges) and hydrogen bonds as the key interactions involved in DHLA binding to HSA. Molecular docking confirmed that the Sudlow I site could accommodate DHLA and that the ligand is bound to the protein in a specific conformation. The molecular dynamic simulation showed that the formed complex is stable. Binding of DHLA does not affect the structure of the protein, but it thermally stabilises HSA. Bound DHLA had no effect on the susceptibility of HSA to trypsin digestion. Since DHLA is a commonly used food supplement, knowledge of its pharmacokinetics and pharmacodynamic properties in an organism is very important. This study further expands it by providing a detailed analysis of its interaction with HSA, the primary drug transporter in the circulation.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3