Experimental carbothermal reduction of MgO at low pressure using concentrated solar energy

Author:

Puig J.1,Balat-Pichelin M.1

Affiliation:

1. PROMES-CNRS Laboratory, Font-Romeu, France

Abstract

The improved solar reactor Sol@rmet allows to investigate the reduction of MgO in presence of carbon using concentrated solar energy in low vacuum conditions close to 900 Pa. The influence of the carbon type was studied and it was shown that a carbon issued from a biomass source was a great candidate. A gradual increase of the temperature during experiment allowed to obtain promising results. Powders with a high Mg content up to 97 m% and a high yield rate up to 50% were collected. Short time experiments at fixed locations under the focus of the solar concentrator were performed in order to obtain information on the kinetics of the carbothermal reduction of MgO. Notably, these experiments have underlined the temperature effect on the CO emission. 50 to 80% of the CO emission mainly occurred in 100 s after the beginning of the experiments. The phase boundary reaction between MgO and C appeared to be the dominant process at the initial stage of the carbothermal reduction. Calculated activation energy of this process is around 260 kJ mol-1.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A State-Of-The-Art Review on Materials Production and Processing Using Solar Energy;Mineral Processing and Extractive Metallurgy Review;2023-08-08

2. Solar Metal Fuels for Future Transportation;Solar Fuels;2023-04-21

3. Recyclable metal fuels as future zero-carbon energy carrier;Applications in Energy and Combustion Science;2023-03

4. Regenerating metal fuels through the carbothermal reduction of magnesia and alumina using concentrated solar energy;THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022;2023

5. Metal fuels production for future long-distance transportation through the carbothermal reduction of MgO and Al2O3: A review of the solar processes;Energy Conversion and Management;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3