Affiliation:
1. National Institute of Technology Warangal, Department of Mechanical Engineering, Telangana, India
Abstract
In this paper the steady-state analysis has been carried out on single phase natural circulation loop with water and water based Al2O3 (Al2O3-water) nanofluid at 1%, 3%, 5%, and 6% particle volume concentrations. For this study, a 3-D geometry of natural circulation loop is developed and simulated by using the software, ANSYS (FLUENT) 14.5. Based on the Stokes number, mixture model is adopted to simulate the nanofluid based natural circulation loop. For the simulations, the imposed thermal boundary conditions are: constant heat input over the range of 200-1000 W with step size of 200 W at the heat source and isothermal wall temperature of 293 K at the heat sink. Adiabatic boundary condition is imposed to the riser and down-comer. The heat transfer characteristics and fluid-flow behavior of the loop fluid in natural circulation loop for different heat inputs and particle concentrations are presented. The result shows that the mass-flow rate of loop fluid in natural circulation loop is enhanced by 26% and effectiveness of the natural circulation loop is improved by 15% with Al2O3-water nanofluid when compared with water. All the simulation results are validated with the open literature in terms of Reynolds number and modified Grashof number. These comparisons confidently say that the present 3-D numerical model could be useful to estimate the performance of natural circulation loop.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献