Influence of turning parameters on cutting temperature by applying the design of experiments with the definition of the workpiece material behavior

Author:

Medina Nuria1,Miguel Valentin2,Manjabacas Maria2,Martinez Alberto1,Ayllon Jorge3,Coello Juana2

Affiliation:

1. University of Castilla-La Mancha, Regional Development Institute, Materials Science and Engineering, Albacete, Spain

2. University of Castilla-La Mancha, Regional Development Institute, Materials Science and Engineering, Albacete, Spain + University of Castilla-La Mancha, Industrial Engineering School of Albacete, Applied Mechanics and Project Engineering Department, Albac

3. University of Castilla-La Mancha, Industrial Engineering School of Albacete, Applied Mechanics and Project Engineering Department, Albacete, Spain

Abstract

This paper evaluates the behavior of cutting temperature under the influence of specific cutting parameters by applying both Factorial Design and the Surface Response Methodology. Cutting speed, the feed rate and type of material were selected as input parameters to perform this study. As type of material is a non quantitative factor, it is necessary to establish a particular index to define it. Although different properties were analyzed, the average stress between the yield and strength stresses was demonstrated as the most representative property to describe material. The experimental values of temperatures during the turning process were obtained with an infrared thermography camera and experiments were designed to run the statistical analysis with commercial software. Both the Factorial Design and Surface Response methodologies showed the influence that specific values of the input parameters had on cutting temperatures. Factorial Design allowed more accurate results, but more experiments had to be carried out, while the Surface Response Methodology provided suitable information with fewer tests. A comparison was made between the experimental and some analytical results, for example those obtained by Cook, and showed a good agreement.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3