Central invariants and enveloping algebras of braided Hom-Lie algebras

Author:

Wang Shengxiang1,Zhang Xiaohui2,Guo Shuangjian3

Affiliation:

1. School of Mathematics and Finance, Chuzhou University, Chuzhou, China

2. School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China

3. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, P.R. China

Abstract

Let (H,?) be a monoidal Hom-Hopf algebra and HH HYD the Hom-Yetter-Drinfeld category over (H,?). Then in this paper, we first introduce the definition of braided Hom-Lie algebras and show that each monoidal Hom-algebra in HH HYD gives rise to a braided Hom-Lie algebra. Second, we prove that if (A,?) is a sum of two H-commutative monoidal Hom-subalgebras, then the commutator Hom-ideal [A,A] of A is nilpotent. Also, we study the central invariant of braided Hom-Lie algebras as a generalization of generalized Lie algebras. Finally, we obtain a construction of the enveloping algebras of braided Hom-Lie algebras and show that the enveloping algebras are H-cocommutative Hom-Hopf algebras.

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enveloping algebras for Hom-Lie algebras in Hom-Yetter--Drinfeld categories;Publicationes Mathematicae Debrecen;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3