CXC chemokine ligand 12α-mediated increase in insulin secretion and survival of mouse pancreatic islets in response to oxidative stress through modulation of calcium uptake

Author:

Vidakovic Melita1ORCID,Caballero-Garrido Ernesto2,Mihailovic Mirjana3ORCID,Arambasic-Jovanovic Jelena3,Sinadinovic Marija3ORCID,Rajic Jovana3ORCID,Uskokovic Aleksandra3ORCID,Dinic Svetlana3ORCID,Grdovic Nevena3ORCID,Djordjevic Milos3ORCID,Tolic Anja3ORCID,Poznanovic Goran3ORCID

Affiliation:

1. Institute for Biological Research, Department of Molecular Biology, Belgrade + Universidad Miguel Hernández de Elche, Institute of Bioengineering, UNIT of Cell Physiology and Nutrition, Elche, Spain

2. Universidad Miguel Hernández de Elche, Institute of Bioengineering, UNIT of Cell Physiology and Nutrition, Elche, Spain

3. Institute for Biological Research, Department of Molecular Biology, Belgrade

Abstract

We examined whether CXCL12? improves insulin secretion by influencing the Ca2+ oscillation pattern and Ca2+ influx ([Ca2+]i), thereby enhancing the viability of pancreatic islet cells in oxidative stress. The islets of Langerhans were isolated from male OF1 mice and pretreated with 40 ng/mL of CXCL12? prior to exposure to 7.5 ?M hydrogen peroxide, which served to induce oxidative stress. Incubation of islets with CXCL12? induced pancreatic ?-cell proliferation and improved the ability of ?-cells to withstand oxidative stress. Consecutive treatments of isolated islets with hydrogen peroxide caused a decline in ?-cell functioning over time, while the CXCL12? pretreatment of islets exhibited a physiological response to high glucose that was comparable to control islets. The attenuated response of islets to a high D-glucose challenge was observed as a partial to complete abolishment of [Ca2+]i. Treatments with increasing concentrations of CXCL12? decreased the number of Ca2+ oscillations that lasted longer, thus pointing to an overall increase in [Ca2+]i, which was followed by increased insulin secretion. In addition, treatment of islets with CXCL12? enhanced the transcription rate for insulin and the CXCR4 gene, pointing to the importance of CXCL12/CXCR4 signaling in the regulation of Ca2+ intake and insulin secretion in pancreatic islet cells. We propose that a potential treatment with CXCL12? could help to remove preexisting glucotoxicity and associated temporary ?-cell stunning that might be present at the time of diabetes diagnosis in vivo.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3