Application of inverse concepts to drying

Author:

Kanevce Ljubica1,Kanevce Gligor2,Dulikravich George3

Affiliation:

1. St. Kliment Ohridski University - Faculty of Technical Sciences, Bitola, Macedonia

2. Macedonian Academy of Sciences and Arts Skopje, Macedonia

3. Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida, USA

Abstract

This paper deals with the application of inverse approaches to estimation of drying body parameters. Simultaneous estimation of the thermo physical properties of a drying body as well as the heat and mass transfer coefficients, by using only temperature measurements, is analyzed. A mathematical model of the drying process has been developed, where the moisture content and temperature fields in the drying body are expressed by a system of two coupled partial differential equations. For the estimation of the unknown parameters, the transient readings of a single temperature sensor located in an infinite flat plate, exposed to convective drying, have been used. The Levenberg-Marquardt method and a hybrid optimization method of minimization of the least-squares norm are used to solve the present parameter estimation problem. An analysis of the influence of the drying air velocity, drying air temperature, drying body dimension, and drying time on the thermophysical properties estimation, that enables the design of the proper experiments by using the so-called D-optimum criterion was conducted. In order to perform this analysis, the sensitivity coefficients and the sensitivity matrix determinant were calculated for the characteristic drying regimes and the drying body dimensions.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3