Numerical solution for stochastic heat equation with Neumann boundary conditions

Author:

Raja Balachandar S.1,Uma D.1,Jafari H.2,Venkatesh S.G.1

Affiliation:

1. Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, Tamil Nadu, India

2. Department of Mathematical Sciences, University of South Africa, Pretoria, South Africa + Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan + Department of Mathematics and Informatics, Azerbaijan University, Baku, Azerbaijan

Abstract

In this article, we propose a new technique based on 2-D shifted Legendre poly?nomials through the operational matrix integration method to find the numeri?cal solution of the stochastic heat equation with Neumann boundary conditions. For the proposed technique, the convergence criteria and the error estima?tion are also discussed in detail. This new technique is tested with two exam?ples, and it is observed that this method is very easy to handle such problems as the initial and boundary conditions are taken care of automatically. Also, the time complexity of the proposed approach is discussed and it is proved to be O[k(N + 1)4] where N denotes the degree of the approximate function and k is the number of simulations. This method is very convenient and efficient for solving other partial differential equations.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3