General solutions for the mixed boundary value problem associated to hydromagnetic flows of a viscous fluid between symmetrically heated parallel plates

Author:

Javaid Maria1,Imran Muhammad1,Fetecau Constantin2,Vieru Dumitru3

Affiliation:

1. Department of Mathematics, Governemtn College University, Faisalabad, Pakistan

2. Academy of Romanian Scientists, Bucharest, Romania

3. Department of Theoretical Mechanics, Technical University of Iasi, Romania

Abstract

Exact general solutions for hydromagnetic flows of an incompressible viscous fluid between two horizontal infinite parallel plates are established when the upper plate is fixed and the inferior one applies a time-dependent shear stress to the fluid. Porous effects are taken into consideration and the problem in discussion is completely solved for moderate values of the Hartman number. It is found that the fluid velocity and the non-trivial shear stress satisfy PDE of the same form and the motion characteristics do not depend of magnetic and porous parameters independently but only by a combination of them that is called the effective permeability. For illustration, as well as to bring to light some physical insight of results that have been obtained, three special cases are considered and the influence of Reynolds number as well as combined porous and magnetic effects on the fluid motion are graphically underlined and discussed for motions due to constant or ramped-type shear stresses on the boundary. The starting solutions corresponding to motions induced by the lower plate that applies constant or oscillatory shear stresses to the fluid are presented as sum of steady-state and transient solutions and the required time to reach the steady-state is graphically determined. This time is greater for motions due to sine as compared to cosine oscillating shear stresses on the boundary. The steady-state is rather obtained in the presence of a magnetic field or porous medium.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3