The efficient implementation of distributed indexing with Hadoop for digital investigations on Big Data

Author:

Lee Taerim1,Lee Hyejoo2,Rhee Kyung-Hyune1,Shin Uk1

Affiliation:

1. Pukyong National University, Busan, Republic of Korea

2. Kongju National University, Gongju, Republic of Korea

Abstract

Big Data brings new challenges to the field of e-Discovery or digital forensics and these challenges are mostly connected to the various methods for data processing. Considering that the most important factors are time and cost in determining success or failure of digital investigation, the development of a valid indexing method for efficient search should come first to more quickly and accurately find relevant evidence from Big Data. This paper, therefore, introduces a Distributed Text Processing System based on Hadoop called DTPS and explains about the distinctions between DTPS and other related researches to emphasize the necessity of it. In addition, this paper describes various experimental results in order to find the best implementation strategy in using Hadoop MapReduce for the distributed indexing and to analyze the worth for practical use of DTPS by comparative evaluation of its performance with similar tools. To be short, the ultimate purpose of this research is the development of useful search engine specially aimed at Big Data indexing as a major part for the future e-Discovery cloud service.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Selective Comparative Review of CRISP-DM and TDSP Development Methodologies for Big Data Analytics Systems;Transactions on Computational Science and Computational Intelligence;2023-11-04

2. A COMPARATIVE STUDY OF DIFFERENT SEARCH AND INDEXING TOOLS FOR BIG DATA;Jordanian Journal of Computers and Information Technology;2022

3. Forensic cloud environment: a solution for big data forensics;International Journal of Electronic Security and Digital Forensics;2022

4. Integration of IoT Streaming Data With Efficient Indexing and Storage Optimization;IEEE Access;2020

5. HBSD;International Journal of Information Technology and Web Engineering;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3