Optimization of the simultaneous production of cellulase and xylanase by submerged and solid-state fermentation of wheat chaff

Author:

Jovanovic Mirjana1,Vucurovic Damjan1ORCID,Bajic Bojana1ORCID,Dodic Sinisa1ORCID,Vlajkov Vanja1ORCID,Jevtic-Mucibabic Rada2

Affiliation:

1. University of Novi Sad, Faculty of Technology Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Novi Sad, Serbia

2. University of Novi Sad, Institute of Food Technology Novi Sad, Novi Sad, Serbia

Abstract

Wheat chaff as an agricultural waste represents a cheap raw material for biotechnological processes. With its lignocellulosic composition, it is suitable for producing hydrolytic enzymes for second generation renewable fuel production technologies. The aim of this work was to optimize the process parameters (cultivation temperature 25?35?C, pH value 4?6 and cultivation time 3?7 days) of the cultivating fungi (Trichoderma reesei QM 9414) on a media based on wheat chaff by submerged and solid-state techniques, in order to enhance and compare the two types of simultaneous cellulase and xylanase production. Optimal conditions for the submerged fermentation were 29.65?C for temperature, pH 4.27 and 7 days of cultivation, while for the solid-state fermentation, the optimal conditions were 28.01?C, pH 6.00 and 7 days. The cellulolytic and xylanolytic activities of the obtained cultivation broth filtrates were 0.0535 and 0.1676 U mL-1 for the submerged fermentation, and 0.0407 and 0.1401 U mL-1 for the solid-state fermentation, respectively, and with a 26.77 and 13.39 % enhancement of enzyme activity for submerged fermentation, and a 22.96 and 42.66 % enhancement for solid-state fermentation, respectively, compared to the results obtained before optimization.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3